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Abstract—Distributed collaborative spectrum sensing has been
considered for Cognitive Radio (CR) in order to cope with
fading and shadowing effects that affect a single CR performance,
without the communication overhead of centralized cooperation
through a fusion center. In this paper, we consider collaborative
spectrum sensing by a distributed network of CRs from sub-
Nyquist samples to overcome the sampling rate bottleneck of the
wideband signals a CR usually deals with. We present a joint
reconstruction algorithm, Randomized Distributed Simultaneous
Iterative Hard Thresholding (RDSIHT) that adapts the original
IHT to block sparse and matrix (simultaneous) inputs, as well
as distributed collaboration settings. An observation vector is
passed around the network as a random walk process, and
updated at each iteration by one of the CRs. Simulations
show that our algorithm outperforms a distributed collaborative
scheme based on the One-Step Greedy Algorithm (OSGA) using
randomized gossip, and that its performance converges to that of
its centralized version.

I. INTRODUCTION

The traditional task of spectrum sensing has been revisited
with the emergence of sensor networks [1], [2]. In such
settings, a group of receivers senses the surroundings and
share some information about the measured spectrum. The
sharing can be either soft or hard, namely the sensors share
their measurements themselves or only local binary decisions
about the presence or absence of a signal. This sharing process
can be carried out in two ways: centralized fusion, where the
shared data is sent to a fusion center which processes it jointly
and transmits its decision back to the sensors, or distributed
collaboration where the sensors only communicate with their
neighbors.

Collaboration in a sensing network allows to cope with
practical issues such as path loss, fading and shadowing
[2]. Cooperation has been shown to improve the detection
performance and relax sensitivity requirements by exploiting
spatial diversity [3], [4]. The authors in [3], [4] quantify the
effect of collaboration on the probabilities of detection and
false alarm in the Nyquist regime and in centralized settings.
In [3], an OR-rule based on the binary decisions of the sensors
is used as a fusion rule, whereas a joint optimization problem
is solved in [4] to find the optimal decision threshold.

Distributed cooperative spectrum sensing has recently re-
ceived renewed attention with the development of Cognitive
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Radio (CR), considered as a promising solution to the ever-
increasing spectrum crowdedness [5], [6], [7]. Secondary users
would opportunistically access frequency bands left vacant
by their primary owners, called white space or spectrum
holes, increasing spectral efficiency. Spectrum sensing is an
essential task in the CR cycle [7]. Indeed, a CR should be
able to constantly monitor the spectrum and detect the primary
users (PUs) activity, reliably and fast [8], [9]. To cope with
fading and shadowing effects, distributed networks of CRs
have been considered in order to avoid the communication
overhead of a centralized approach including a fusion center.
A distributed approach is considered in [10] to estimate the
power distribution in space and frequency. The authors use
a discretized grid both in space and frequency and do not
recover the emitted signal continuous support. In [11], each CR
measures the received energy over a certain sensing time and
a consensus algorithm is used to cooperatively detect a single
signal only. The authors in [12] consider a single transmission
as well and recover its power spectral density. Several decision
statistics based on the latter are then derived to decide about
the presence or absence of the PU.

In order to increase the chance to find an unoccupied
spectral band, the CR has to sense a wide band of spectrum.
Nyquist rates of wideband signals are high and can even
exceed today’s best analog-to-digital converters (ADCs) front-
end bandwidths. Moreover, such high sampling rates generate
a large number of samples to process, affecting speed and
power consumption. Several works thus consider spectrum
sensing from sub-Nyquist samples, assuming that the input
signal is sparse in the frequency domain. In [13] and [14],
the joint support of the sparse signal is recovered from com-
pressive samples acquired by different CRs, using a distributed
iterative thresholding algorithm and an approximate message
passing approach, respectively. In [15], [16], two schemes
are proposed. When the channel state information (CSI) is
unknown, only the signal support is recovered, whereas if
it is known, the spectrum can be recovered as well. In the
first case, the average decision value is computed via an
average consensus technique while the spectrum is recovered
by combining consensus averaging with sparsity constrained
linear regression. However, in all of the above works, in
order to derive their reconstruction scheme, the authors exploit
a mathematical relation between sub-Nyquist and Nyquist
samples, whereas no specific sampling scheme is provided.
Moreover, the wideband spectrum is divided into predefined
channels, which are each represented by one single entry of the
sparse vector to recover. These approaches cannot be naturally
extended from a single vector per CR to the block sparse case
in distributed settings.
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In this work, we propose a distributed collaborative spec-
trum sensing method from samples of a multiband signal
acquired at a sub-Nyquist rate at each CR. We use the
modulated wideband converter (MWC) [17] for the sampling
stage. Each CR samples the wideband sparse signal suffering
from different effects of fading and shadowing. A single vector,
computed from the low rate samples, is passed in the network
rather than the samples themselves to reduce communication
overhead. We derive a reconstruction algorithm, Randomized
Distributed Iterative Hard Thresholding (RDSIHT), that adapts
our centralized BSIHT [18] to distributed collaboration. When
a CR receives this vector, it performs local computation to
update it and then update its estimate of the signal support
accordingly. Finally, the vector is sent to a neighbor CR,
chosen according to the random walk probability. We do not
assume any a priori knowledge on the CSI. Simulations show
that RDSIHT outperforms a distributed collaborative version
of the One-Step Greedy Algorithm (OSGA) presented in [19]
using randomized gossip, and that its performance converges
to the centralized version, as expected.

This paper is organized as follows. In Section II, we
present the models of the transmitted and received signals
as well as the CR network. Sections III and IV describe the
individual sub-Nyquist sampling process and joint distributed
support recovery stage, respectively. Numerical experiments
are presented in Section V.

II. SIGNAL AND NETWORK MODELS

A. Transmitted Signal Multiband Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig
transmissions, such that

x(t) =

Nsig∑
i=1

si(t), (1)

where si(t) is a bandpass process. The single-sided bandwidth
of each transmission is assumed to not exceed B. Formally,
the Fourier transform of x(t) defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq
the Nyquist rate of x(t). Only NSig and B, or at least an
upper bound for each, are assumed to be known. The carrier
frequencies and modulations of si(t) are unknown. Denote the
frequency support of x(t) by S = S(x(t)) and by κ = 2NSig
its sparsity. The signal is received by a CR network composed
of Nrec sensors.

B. Network Model

The CR network is modeled by an undirected, connected
graph G = (V ;E) where V is the set of receivers and E is the
set of communication links. The existence of edge (i, j) ∈ E
means that the ith and jth CRs can exchange messages on
a control channel. Denote the neighbor set of the ith CR by
N(i), i.e. N(i) = {j|(i, j) ∈ E} and its cardinality by di, i.e.
di = |N(i)|. The communication is assumed to be reliable,
namely no messages are lost.

C. Faded Received Signal

We consider two effects of the transmission channels:
Rayleigh fading, or small-scale fading, and log-normal shad-
owing, or large-scale fading [20], [3], [21]. Denote by rij(t)
the received signal corresponding to the ith transmission,
1 ≤ i ≤ Nsig, received at the jth CR, 1 ≤ j ≤ Nrec.
The received signal is generally described in terms of the
transmitted signal si(t) convolved with the impulse response
of the channel hij(t), namely

rij(t) = si(t) ∗ hij(t), (3)

where ∗ denotes convolution.

1) Rayleigh fading: For most practical channels, the free-
space propagation model, which only accounts for path loss,
is inedequate to describe the channel. A signal can travel
from transmitter to receiver over multiple reflective paths,
which is traditionally modeled as Rayleigh fading, namely the
envelope of the channel responses hij(t) follows the Rayleigh
distribution, given by

ph(r) =

{
r
σ2 e
−r2/2σ2

r ≥ 0
0 otherwise,

(4)

where r is the enveloppe amplitude of the received signal, and
2σ2 its mean power [21].

2) Log-normal shadowing: Large-scale fading represents
the average signal power attenuation or path loss due to motion
over large areas. This phenomenon is affected by promi-
nent terrain contours between the transmitter and receiver.
Empirical measurements suggest that this type of fading, or
shadowing, follows a normal distribution in dB units [22], or
alternatively, the linear channel gain may be modeled as a
log-normal random variable [3]. Therefore, the path loss (PL)
measured in dB is expressed as

PL = PL0 + 10γ log
d

d0
+Xσ. (5)

Here, the reference distance d0 corresponds to a point located
in the far field of the antenna (typically 1 km for large cells).
The path loss to the reference point PL0 is usually found
through field measurements or calculated using free-space
path loss. The value of the path loss exponent γ depends on
the frequency, antenna heights, and propagation environment.
Finally, Xσ denotes a Gaussian random variable (in dB) with
variance σ2 determined heuristically as well [21].

The shadowed received signal is thus given by

rij(t) = 10−PLij/20 · si(t), (6)

where PLij denotes the path loss between the ith transmitter
and the jth receiver. Here, hij(t) = 10−PLij/20 is a constant.

D. Problem Formulation

A network of Nrec CRs receives the Nsig transmissions,
such that the received signal at the jth CR is given by

x(j)(t) =

Nsig∑
i=1

rij(t). (7)

Obviously, the support of x(j)(t) is included in the support
of x(t), namely S(x(j)(t)) ⊆ S. Since the transmissions are
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affected differently by fading and shadowing effects from each
transmitter to each CR, we assume that

⋃(
S(x(j)(t))

)
= S.

Our goal is therefore to assess the support of the trans-
mitted signal x(t) from sub-Nyquist samples of the received
x(j)(t), 1 ≤ j ≤ Nrec. In order to determine the support
of x(t), we exploit the joint sparsity shared by x(j)(t), 1 ≤
j ≤ Nrec. Specifically, we jointly recover the common support
of x(j)(t) from their sub-Nyquist samples, in a distributed
manner.

III. INDIVIDUAL SUB-NYQUIST SAMPLING

In this section, we briefly describe the sub-Nyquist sam-
pling schemes performed at each CR on the corresponding
received signal x(j)(t). We consider two different approaches:
multicoset sampling [23] and the MWC [17] which were
previously proposed for sparse multiband signals. Due to
lack of space, we only briefly describe the MWC sampling
scheme. The reader is refered to [23] for more details on
multicoset sampling. However, since both schemes lead to
identical expressions of the signal spectrum in terms of the
samples, the support reconstruction stage presented in Section
IV can be applied to either of the samples. For convenience,
we drop the index j in this section.

A. MWC sampling

The MWC [17] is composed of M parallel channels.
In each channel, an analog mixing front-end, where x(t) is
multiplied by a mixing function pi(t), aliases the spectrum,
such that each band appears in baseband. The mixing functions
pi(t) are required to be periodic with period Tp such that
fp = 1/Tp ≥ B. The function pi(t) has a Fourier expansion

pi(t) =

∞∑
l=−∞

cile
j 2π
Tp
lt
. (8)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs ≥ fp.
For the sake of simplicity, we choose fs = fp. Repeating the
calculations in [17], we derive the relation between the known
DTFTs of the samples yi[n] and the unknown X(f)

z(f) = Ax(f), f ∈ Fs, (9)

where z(f) is a vector of length N with ith element zi(f) =
Yi(e

j2πfTs). The unknown vector x(f) is given by

xk(f) = X (f +Kkfs) , 1 ≤ k ≤ N, (10)

where Kk = k − N+1
2 , 1 ≤ k ≤ N for odd N and Kk =

k − N+2
2 , 1 ≤ k ≤ N for even N . The M × N matrix A

contains the coefficients cil such that Ail = ci,−l = c∗il. The
overall sampling rate is

ftot =Mfs =
M

N
fNyq. (11)

B. Continuous to Finite (CTF)

The set of equations (9) consist of an infinite number
of linear systems since f is a continuous variable. Such
systems are known as infinite measurement vectors (IMV) in
the compressed sensing (CS) literature. We use the support

recovery paradigm from [23] that produces a finite system
of equations, called multiple measurement vectors (MMV)
from an infinite number of linear systems. This reduction is
performed by what is referred to as the continuous to finite
(CTF) block.

From (9), we have

Q = AZAH (12)

where Q =
∫
f∈Fs z(f)z

H(f)df is a M × M matrix and
Z =

∫
f∈Fs x(f)x

H(f)df is a N × N matrix. We then
construct a frame V such that Q = VVH . Clearly, there are
many possible ways to select V. We construct it by performing
an eigendecomposition of Q and choosing V as the matrix of
eigenvectors corresponding to the non zero eigenvalues. We
can then define the following linear system

V = AU. (13)

From [23] (Propositions 2-3), the support of the unique spars-
est solution of (13) is the same as the support of the original
set of equations (9). In order to find the joint support S, we
exploit both the simultaneous sparsity between the columns
U(j) for each CR and the joint sparsity between the matrices
U(j) between all CRs.

In the worst case, we require M ≥ 2κ, leading to a minimal
sampling rate of 2κB for each CR [23].

IV. JOINT SUPPORT RECONSTRUCTION

In this section, we consider joint support recovery from
the observation matrices V(j), 1 ≤ j ≤ Nrec. We present two
distributed algorithms, DOSGA and RDSIHT. While the latter
is our main contribution, the former is derived as a simple
alternative for comparison purposes, extending the OSGA,
presented in [19].

A. DOSGA

We first adapt the OSGA to our distributed settings.
The goal is for each CR to learn the N × 1 vector ŵ
that approximates the average of w(j), 1 ≤ j ≤ Nrec, i.e.
ŵ = 1

Nrec

∑Nrec
j=1 w

(j). Here, the nth row of w(j), namely

w
(j)
n =

∥∥∥∥((A(j)
)H

V(j)
)T
n

∥∥∥∥2
2

computes the `2-norm of the

projection of the observation matrix V(j) onto the nth column
of the measurement matrix A(j), where (C)

T
n denotes the

nth row of the matrix C. Finding this average is a stan-
dard distributed average consensus problem, also referred to
as distributed averaging or distributed consensus. We use a
randomized gossip algorithm [24] for this purpose.

At each iteration, a CR, say with index i, is chosen
uniformly at random (i.e. it wakes up with some probability).
It then contacts a random neighbor j, chosen with some
probability Pij , according to the Metropolis-Hastings scheme
for random transition probabilities,

Pij =


min{ 1

di
, 1
dj
} (i, j) ∈ E∑

(i,k)∈Emax{0,
1
di
− 1

dk
} i = j

0 otherwise.

(14)
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and computes the average between w(i) and w(j). Both
CRs update their correlation vector and corresponding support
accordingly. The resulting DOSGA is shown in Algorithm 1.
Here, supp(T (w, κ)) denotes the κ largest elements of w.

Algorithm 1 DOSGA

Input: observation matrices V(j), measurement matrices
A(j), random transition probabilities matrix P

Output: index set S containing the joint support of U(j)

1: Initialization: w(j)
n =

∥∥∥∥((A(j)
)H

V(j)
)T
n

∥∥∥∥2
2

, 1 ≤ n ≤ N ,

S(j) ← supp(T (w(j), κ)), for 1 ≤ j ≤ NNrec, i← 1
2: while halting criterion false do
3: Select neighbor j with probability Pij
4: c = w(i)+w(j)

2

5: w(i) = c , w(j) = c
6: S(i) ← supp(T (w(i), κ)) , S(j) ← supp(T (w(j), κ))

end while
7: S ← S(i)

DOSGA converges to the same solution as centralized
OSGA.

B. RDSIHT

Next, we turn to the RDSIHT algorithm, which adapts
the centralized BSIHT algorithm [18] (Algorithm 2) to the
distributed scenario. BSIHT is itself an extension of SIHT
[25] to the block sparse case. In the collaborative centralized
problem, where a fusion center exists, each receiver contributes
a jointly sparse matrix U(j). Estimates of the columns of
the sparse matrix U(j) are computed separately. The indices
of the common support are then selected by averaging over
the estimates of the jointly sparse columns of all receivers.
Once the support is selected, the updated calculations are
performed separately for each column of the sparse matrix and
for each receiver. An adaptive step size is used to improve the
performance with regard to a fixed scaling factor [25].

Our distributed approach was inspired by the randomized
incremental subgradient method proposed in [26] and recent
work on a stochastic version of IHT in [27]. A vector w of size
N is shared in the network through random walk. The indices
of its κ largest values correspond to the current estimated
support. When the ith CR receives w, it locally updates it
by performing a gradient step using its own objective function
that is then added to w. Next, it selects a neighbor j to send the
vector to with probability Pij (14). The joint sparsity accross
the CRs is exploited by sharing one common vector w by
the network. The resulting RDSIHT is shown in Algorithm 2.
Here, Û|S is the estimated matrix U reduced to the support
set S and (·)H denotes the Hermitian operation.

The communication load of DOSGA is twice that of
RDSIHT for the same number of iterations, since in DOSGA,
two vectors are sent per iteration, whereas in RDSIHT, only
one vector is sent per iteration.

V. SIMULATION RESULTS

In this section, we compare the performance of our two
algorithms, DOSGA and RDSIHT, along with the centralized

Algorithm 2 RDSIHT

Input: observation matrices V(j), measurement matrices
A(j), random transition probabilities matrix P

Output: index set S containing the joint support of U(j)

1: Initialization: w = 0, Û(j) = 0, S(j) ← {1, ..., κ}, µ(j) =
1
M , Z(j) = 0, c(j) = 0, for 1 ≤ j ≤ NNrec, i← 1

2: while halting criterion false do
3: Z(i) = Û(i) + µ(i)

(
A(i)

)H (
V(i) −A(i)Û(i)

)
4: wn = wn +

∥∥∥(Z(i)
)T
n

∥∥∥2
2
, 1 ≤ n ≤ N

5: Si ← supp(T (w, κ))
6: Û(i) = Z(i)

|
S(i)

7: µ(i) =

∥∥∥∥∥[(A(i))
H
(V−A(i)Û(i))

]
|
S(i)

∥∥∥∥∥∥∥∥∥∥A(i)|
S(i)

[
(A(i))

H
(V−A(i)Û(i))

]
|
S(i)

∥∥∥∥∥
8: Select neighbor j with probability Pij
9: i← j

end while
10: S ← S(i)

BSIHT [18], in order to test the convergence of the distributed
RDSIHT to its centralized version.

In the simulations, we consider signals x(t) with Nyquist
rate fNyq = 6.1GHz composed of Nsig = 3 QPSK modulated
transmissions with arbitrary carriers and single-sided band-
width B = 20MHz. The transmissions are passed through
Rayleigh channels with maximum shifting 2σ2 = 5MHz.
Besides, we apply log-normal shadowing with the following
parameters: reference distance d0 = 0.01, path loss to the
reference point PL0 = 0, γ and Xσ are chosen arbitrarily from
the sets of values {2.6, 2.4, 0, 3}, {14.1, 9.6, 0, 7} respectively.
These are common values describing different obstacles and
propagation effects [28].

In each experiment, a set of Nrec 2D points, representing
the coordinates of the CRs, are generated uniformly at random
over the unit square. We consider a geometric graph [29] where
a pair of nodes is connected if the euclidean distance between
them is less than dneigh = 0.5. In addition, the distances
between each CR and each transmitter are drawn uniformly
at random between 0 and 1. For the sampling stage at each
CR, we consider N = 256 spectral bands and M = 15 analog
channels, each sampling at fs = 24MHz and with Ns = 40
samples per channel. The overall sampling rate of each receiver
is thus 360MHz, which is a little below 6% of the Nyquist rate
and 3 times the Landau rate.

In all of the three algorithms, the sparsity is assumed to
be known. DOSGA and RDSIHT use a maximum number of
iterations of 500 as halting criterion, whereas BSIHT runs for
up to 10 iterations. The number of iterations of the distributed
algorithm is large enough for all the CRs to converge to
the same support. A success is declared whenever the joint
recovered and original supports are exactly identical. Each
experiment is repeated over 500 realisations.

We show the influence of several practical parameters on
the performance of our recovery algorithms. In the first exper-
iment, we illustrate the impact of signal-to-noise ratio (SNR)
on the detection performance. Here, we consider Nrec = 20.
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Figure 1 shows the support recovery success rate of the three
algorithms for different values of SNR.

Fig. 1. Influence of the SNR on the success rate.

In the second experiment, we vary the number of receivers
Nrec. We consider the same sampling parameters as in the
previous experiment and set the SNR to be 10dB. Figure 2
shows the support recovery success rate for different values of
the number of receivers.

Fig. 2. Influence of the number of receivers on the success rate.

We observe that RDSIHT outperforms DOSGA for differ-
ent parameters combination. In addition, RDSIHT converges
in performance to its centralized version, BSIHT.
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